NBCC 2020 CODE CHANGES

2023-11-22

Harrison Glotman

THE FUNDAMENTALS

- Gravity only pushes down- Spans are gravity's **nemesis**, Columns are gravity's **friend**.
- Spanning elements Bend, Compress, Shear and Pull on materials
 - All materials have unique strength and stiffness properties prescribed by code, and are optimal for different applications.
- Analysis of each element is broken down into axial, shear, deflection and bending moment plots

DETAILING THE GRAVITY SYSTEM

ROUGH SLAB THICKNESS ESTIMATES

FLAT SLAB CONSTRUCTION GUIDELINES												
Span (m)		Conventional Slab			Post-Tensioned Slab			Slabs with Drop Panels			Drop Panel	
		Interior	End	Cantilever	Interior	End	Cantilever	Interior	End	Cantilever	Depth	Extent
Thickness (mm)	6.0	200	225	2000	175	200	2400	150	175	2400	300	1200
	6.5	200	225	2175	175	200	2600	175	200	2600	350	1300
	7.0	225	250	2325	200	225	2800	175	200	2800	350	1400
	7.5	225	275	2500	200	225	3000	200	225	3000	400	1500
	8.0	250	275	2675	225	250	3200	200	225	3200	400	1600
	8.5	275	300	2825	225	275	3400	225	250	3400	450	1700
	9.0	275	325	3000	250	275	3600	225	275	3600	450	1800
	9.5	300	350	3175	275	300	3800	250	275	3800	500	1900
	10.0	325	350	3325	275	325	4000	275	300	4000	550	2000
	10.5	325	375	3500	300	325	4200	275	300	4200	550	2100
	11.0	350	400	3675	300	350	4400	300	325	4400	600	2200
	11.5	350	400	3825	325	350	4600	300	350	4600	600	2300
	12.0	375	425	4000	325	375	4800	325	350	4800	650	2400

SIZING THE COLUMNS

Height	Span	Column
12 Story	18'0"	14" X 48"
	24'6"	18" X 48"
	30'0"	20" X 48"
	36'0"	26" X 48"
3 Story	18'0"	12" X 36"
	24'6"	12" X 48"
	30'0"	16" X 48"
	36'0"	20" X 48"
4 Story	18'0"	12" X 24"
	24'6"	12" X 30"
	30'0"	12" X 36"
	36'0"	12" X 48"

DETAILING THE SEISMIC SYSTEM

'GOOD' VIBRATIONS

'GOOD' VIBRATIONS

DETAILING FOR DUCTILITY

Testing of a Full-Scale Steel Braced Frame Equipped with CAST CONNEX® High Strength Connectors™ - YouTube

BASICS OF EARTHQUAKE FORCES

TALLER MORE FLEXIBLE BUILDINGS

BASICS OF EARTHQUAKE FORCES

NEW SEISMIC DESIGN LOADS

WAIT...HOW MUCH HIGHER IN VICTORIA!?

HOW DOES MY SOIL MAKE THIS BETTER/WORSE (NBCC 2015)

WORSE GROUND CONDITIONS

WORSE GROUND CONDITIONS

SEISMIC VS. WIND

WHEN TO GET A WIND STUDY?

- Code requires a wind-tunnel test for structures with a period > 4.0 sec
- Generally, this applies for 40-storey tower +/-
- Depending on the seismic site classification (B or better), a wind-tunnel test may help realizing great savings for 30-40 storey range.
- Façade system could be a driver.

WHAT IF WE JUST HIDE FROM THE WIND

IS IT JUST WIND & EARTHQUAKES?

IS IT JUST WIND & EARTHQUAKES?

https://www.youtube.com/watch?v=1JZk95fa5SA

SLOPED COLUMNS ARE COOL (NBCC 2010)

SLOPED COLUMNS ARE WERE COOL (NBCC 2015)

SLOPED COLUMNS ARE DIFFICULT (NBCC 2020)

MY PROJECT HAS SLOPED COLUMNS... WHAT CAN I EXPECT

Columns Get Bigger

- Anything sloping more than 2% triggers a code clause that amplifies the column loads.
- Larger slope- larger column BUT, also adds more load to core. UP TO 3x the LOAD!
- **Peer Review** for nnbalanced sloped Structures

DO WALKING COLUMNS COUNT?

Any column that has a base offset from its position further up has an inherent **sloped load path**.

Walking columns = Sloped Columns

MY COLUMNS TOTALLY ALIGN

MY ARCHITECT NEEDS SLOPED/WALKING COLUMNS. WHAT SHOULD I DO?

Engage us to review as soon as possible, can suggest how to:

-Balance the loads -Proportion the core -Road map to minimize the impacts (Cost, Space inefficiency, Construction complexity, Avoid peer review etc.)

What's the Cheapest Thing to do?

Limit Slopes, offsets, walking, rotating columns, and transfers

WHAT HAPPENS TO MY COLUMNS AND WALLS?

RS

AVOID COLUMNS CLOSE TO THE CORE

Also, more costly core and foundations!

COLUMNS SHRINK

IS IT ALL BAD NEWS? WHAT DO WE DO ABOUT IT?

K.I.S.S. -Limit Slopes, offsets, walking, rotating columns, and transfers

If we want to keep it exciting... we are well-equipped to run a peer review and non-linear analysis. We've been doing it for many years in the United States.

Good news is the simpler the structure, the better it performs from an embodied carbon and cost standpoint.

While conventional means of construction are getting more restrictive, advances are being made in mass timber and sustainability.

ALIGNMENT – ALL ABOUT THE MASSING

29

ALIGNMENT – ALL ABOUT THE MASSING

UNLOCKING THE POTENTIAL OF PT

• ADVANTAGES

- Longer spans with thinner assembly
- Potential elimination of transfers
- PT is about 3x stronger than rebar, but also 3x the price

• DISADVANTAGES

- Future flexibility for office/commercial tenants
- In-slab duct coordination for residential
- Potentially adds a day to the schedule

TO PT OR NOT TO PTCase Study (1)

DOES PT MAKE SENSE IN THIS CASE?

- All tower columns had to transfer due to architectural constraints.
- Only 1 extra column was required to control deflection (no impact on the unit layout)
- Extra construction time, in-slab duct conflicts, increased risks (cost, installation, etc.)

TO PT OR NOT TO PT

Case Study (2)

DOES PT MAKE SENSE IN THIS CASE?

- Most transfers were eliminated.
- More space flexibility for unit planning.
- Additional construction time on the typical floors offset by the savings in transfers.

GETTING TO NET ZERO

On Track: Policy and Embodied Carbon - Glotman Simpson

GETTING TO NET ZERO BUT HOW?

Typical GWP Distribution in High-Rise Residential Buildings

Layout of a one-way beam transfer (left) vs. a two-way slab transfer (right)

See link below to our ON TRACK series on the levers we can pull to achieve net zero by 2050 https://glotmansimpson.com/blog/

- Performance-based concrete and material specifications
- Eliminate transfers unlock the potential of PT
- Optimize structural element strength and sizing (i.e. foundations, columns etc..)
- Track embodied carbon through the design

INTEGRATED GWP PROJECT CALCULATOR

29

GOING TALLER WITH TIMBER

GOING TALLER WITH TIMBER

GOING FARTHER WITH TIMBER

THANK YOU